Hilbertian and complemented finite-dimensional subspaces of Banach lattices and unitary ideals

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Ideals of Operators on and Complemented Subspaces of Banach Spaces of Functions with Countable Support

Let λ be an infinite cardinal number and let `∞(λ) denote the subspace of `∞(λ) consisting of all functions which assume at most countably many non zero values. We classify all infinite dimensional complemented subspaces of `∞(λ), proving that they are isomorphic to `∞(κ) for some cardinal number κ. Then we show that the Banach algebra of all bounded linear operators on `∞(λ) or `∞(λ) has the u...

متن کامل

Subspaces of Small Codimension of Finite-dimensional Banach Spaces

Given a finite-dimensional Banach space E and a Euclidean norm on E, we study relations between the norm and the Euclidean norm on subspaces of E of small codimension. Then for an operator taking values in a Hubert space, we deduce an inequality for entropy numbers of the operator and its dual. In this note we study the following problem: given an n-dimensional Banach space E and a Euclidean no...

متن کامل

Congruence-preserving Extensions of Finite Lattices to Sectionally Complemented Lattices

In 1962, the authors proved that every finite distributive lattice can be represented as the congruence lattice of a finite sectionally complemented lattice. In 1992, M. Tischendorf verified that every finite lattice has a congruence-preserving extension to an atomistic lattice. In this paper, we bring these two results together. We prove that every finite lattice has a congruence-preserving ex...

متن کامل

On permutably complemented subalgebras of finite dimensional Lie algebras

Let $L$ be a finite-dimensional Lie algebra. We say a subalgebra $H$ of $L$ is permutably complemented in $L$ if there is a subalgebra $K$ of $L$ such that $L=H+K$ and $Hcap K=0$. Also, if every subalgebra of $L$ is permutably complemented in $L$, then $L$ is called completely factorisable. In this article, we consider the influence of these concepts on the structure of a Lie algebra, in partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1980

ISSN: 0022-1236

DOI: 10.1016/0022-1236(80)90003-8